37 research outputs found

    From Large Scale Rearrangements to Mode Coupling Phenomenology

    Full text link
    We consider the equilibrium dynamics of Ising spin models with multi-spin interactions on sparse random graphs (Bethe lattices). Such models undergo a mean field glass transition upon increasing the graph connectivity or lowering the temperature. Focusing on the low temperature limit, we identify the large scale rearrangements responsible for the dynamical slowing-down near the transition. We are able to characterize exactly the dynamics near criticality by analyzing the statistical properties of such rearrangements. Our approach can be generalized to a large variety of glassy models on sparse random graphs, ranging from satisfiability to kinetically constrained models.Comment: 4 pages, 4 figures, minor corrections, accepted versio

    Analytic determination of dynamical and mosaic length scales in a Kac glass model

    Full text link
    We consider a disordered spin model with multi-spin interactions undergoing a glass transition. We introduce a dynamic and a static length scales and compute them in the Kac limit (long--but--finite range interactions). They diverge at the dynamic and static phase transition with exponents (respectively) -1/4 and -1. The two length scales are approximately equal well above the mode coupling transition. Their discrepancy increases rapidly as this transition is approached. We argue that this signals a crossover from mode coupling to activated dynamics.Comment: 4 pages, 4 eps figures. New version conform to the published on

    Dynamics of dilute disordered models: a solvable case

    Full text link
    We study the dynamics of a dilute spherical model with two body interactions and random exchanges. We analyze the Langevin equations and we introduce a functional variational method to study generic dilute disordered models. A crossover temperature replaces the dynamic transition of the fully-connected limit. There are two asymptotic regimes, one determined by the central band of the spectral density of the interactions and a slower one determined by localized configurations on sites with high connectivity. We confront the behavior of this model to the one of real glasses.Comment: 7 pages, 4 figures. Clarified, final versio

    Systematic perturbation approach for a dynamical scaling law in a kinetically constrained spin model

    Full text link
    The dynamical behaviours of a kinetically constrained spin model (Fredrickson-Andersen model) on a Bethe lattice are investigated by a perturbation analysis that provides exact final states above the nonergodic transition point. It is observed that the time-dependent solutions of the derived dynamical systems obtained by the perturbation analysis become systematically closer to the results obtained by Monte Carlo simulations as the order of a perturbation series is increased. This systematic perturbation analysis also clarifies the existence of a dynamical scaling law, which provides a implication for a universal relation between a size scale and a time scale near the nonergodic transition.Comment: 17 pages, 7 figures, v2; results have been refined, v3; A figure has been modified, v4; results have been more refine

    Approximation schemes for the dynamics of diluted spin models: the Ising ferromagnet on a Bethe lattice

    Full text link
    We discuss analytical approximation schemes for the dynamics of diluted spin models. The original dynamics of the complete set of degrees of freedom is replaced by a hierarchy of equations including an increasing number of global observables, which can be closed approximately at different levels of the hierarchy. We illustrate this method on the simple example of the Ising ferromagnet on a Bethe lattice, investigating the first three possible closures, which are all exact in the long time limit, and which yield more and more accurate predictions for the finite-time behavior. We also investigate the critical region around the phase transition, and the behavior of two-time correlation functions. We finally underline the close relationship between this approach and the dynamical replica theory under the assumption of replica symmetry.Comment: 21 pages, 5 figure

    On the dynamics of the glass transition on Bethe lattices

    Full text link
    The Glauber dynamics of disordered spin models with multi-spin interactions on sparse random graphs (Bethe lattices) is investigated. Such models undergo a dynamical glass transition upon decreasing the temperature or increasing the degree of constrainedness. Our analysis is based upon a detailed study of large scale rearrangements which control the slow dynamics of the system close to the dynamical transition. Particular attention is devoted to the neighborhood of a zero temperature tricritical point. Both the approach and several key results are conjectured to be valid in a considerably more general context.Comment: 56 pages, 38 eps figure

    Instability of one-step replica-symmetry-broken phase in satisfiability problems

    Full text link
    We reconsider the one-step replica-symmetry-breaking (1RSB) solutions of two random combinatorial problems: k-XORSAT and k-SAT. We present a general method for establishing the stability of these solutions with respect to further steps of replica-symmetry breaking. Our approach extends the ideas of [A.Montanari and F. Ricci-Tersenghi, Eur.Phys.J. B 33, 339 (2003)] to more general combinatorial problems. It turns out that 1RSB is always unstable at sufficiently small clauses density alpha or high energy. In particular, the recent 1RSB solution to 3-SAT is unstable at zero energy for alpha< alpha_m, with alpha_m\approx 4.153. On the other hand, the SAT-UNSAT phase transition seems to be correctly described within 1RSB.Comment: 26 pages, 7 eps figure

    Exhaustive enumeration unveils clustering and freezing in random 3-SAT

    Full text link
    We study geometrical properties of the complete set of solutions of the random 3-satisfiability problem. We show that even for moderate system sizes the number of clusters corresponds surprisingly well with the theoretic asymptotic prediction. We locate the freezing transition in the space of solutions which has been conjectured to be relevant in explaining the onset of computational hardness in random constraint satisfaction problems.Comment: 4 pages, 3 figure

    On the cavity method for decimated random constraint satisfaction problems and the analysis of belief propagation guided decimation algorithms

    Full text link
    We introduce a version of the cavity method for diluted mean-field spin models that allows the computation of thermodynamic quantities similar to the Franz-Parisi quenched potential in sparse random graph models. This method is developed in the particular case of partially decimated random constraint satisfaction problems. This allows to develop a theoretical understanding of a class of algorithms for solving constraint satisfaction problems, in which elementary degrees of freedom are sequentially assigned according to the results of a message passing procedure (belief-propagation). We confront this theoretical analysis to the results of extensive numerical simulations.Comment: 32 pages, 24 figure

    Geometrical organization of solutions to random linear Boolean equations

    Full text link
    The random XORSAT problem deals with large random linear systems of Boolean variables. The difficulty of such problems is controlled by the ratio of number of equations to number of variables. It is known that in some range of values of this parameter, the space of solutions breaks into many disconnected clusters. Here we study precisely the corresponding geometrical organization. In particular, the distribution of distances between these clusters is computed by the cavity method. This allows to study the `x-satisfiability' threshold, the critical density of equations where there exist two solutions at a given distance.Comment: 20 page
    corecore